A Novel Approach for Face Recognition Using PCA and Artificial Neural Network

نویسنده

  • Karthik G
چکیده

Face recognition is a biometric tool for verification and authentication a facial recognition based verification system can further be deemed a computer application for automatically verifying or identifying a person in a digital image. Analytic (local features based) and holistic (global features based) are the two common approaches employed for face recognition approaches with acceptable success rates. In this paper, we present a hybrid features based face recognition Technique .It combines the local and global approaches to produce a high success rate face recognition system. . Experiments are carried out on the SDUMLA-HMT face database. Principal component analysis is used to compute global features while the local feature are computed configuring the central moment and Eigen vectors and the standard deviation of the nose, eyes and mouth segments of the human face as the decision support entities of Artificial neural network. Keywords— face recognition; analytic approach; holistic approach; hybrid features; central moment; standard deviation; eigen vectors; artificial neural network

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Face Detection with methods based on color by using Artificial Neural Network

The face Detection methodsis used in order to provide security. The mentioned methods problems are that it cannot be categorized because of the great differences and varieties in the face of individuals. In this paper, face Detection methods has been presented for overcoming upon these problems based on skin color datum. The researcher gathered a face database of 30 individuals consisting of ov...

متن کامل

Patterns Prediction of Chemotherapy Sensitivity in Cancer Cell lines Using FTIR Spectrum, Neural Network and Principal Components Analysis

    Drug resistance enables cancer cells to break away from cytotoxic effect of anticancer drugs. Identification of resistant phenotype is very important because it can lead to effective treatment plan. There is an interest in developing classifying models of resistance phenotype based on the multivariate data. We have investigated a vibrational spectroscopic approach in order to characterize a...

متن کامل

Patterns Prediction of Chemotherapy Sensitivity in Cancer Cell lines Using FTIR Spectrum, Neural Network and Principal Components Analysis

    Drug resistance enables cancer cells to break away from cytotoxic effect of anticancer drugs. Identification of resistant phenotype is very important because it can lead to effective treatment plan. There is an interest in developing classifying models of resistance phenotype based on the multivariate data. We have investigated a vibrational spectroscopic approach in order to characterize a...

متن کامل

A Novel Method for Face Recognition and Facial Expression Identification using PCA, Neural Network and Random Forest Classifier

The main aim of this paper is to analyze the method of Principal Component Analysis (PCA) and its performance when applied to face recognition. In previous work [10], they use Euclidian Distance for recognition. Here we use Neural Network and Random Forest Classifier which has much higher recognition accuracy than other methods. This algorithm creates a subspace (face space) where the faces in ...

متن کامل

Pose Invariant Face Recognition using Neuro-Fuzzy Approach

In this paper a pose invariant face recognition using neuro-fuzzy approach is proposed. Here adaptive neuro fuzzy interface system (ANFIS) classifier is used as neuro-fuzzy approach for pose invariant face recognition. In the proposed approach the preprocessing of image is done by using adaptive median filter. It removes the salt pepper noise from the original images. From these denoised images...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014